Introduction to “Clean-Slate” Cellular IoT radio access solution

Robert Young (Neul)
David Zhang (Huawei)
Introduction and motivation

- There is a huge opportunity for Mobile Network Operators to exploit the emerging IoT market, including the mass volume, low data rate segment.

- However, this opportunity is critically dependent on achieving the following:
 - Much lower terminal cost compared with GPRS
 - Vastly improved battery life versus GPRS
 - Enhanced indoor coverage versus GPRS

- Otherwise much of the potential market for Cellular IoT will be absorbed by PAN technologies (WiFi, Zigbee, Bluetooth Smart) and proprietary WAN systems.

- Although an evolution of LTE might appear initially attractive due to a convenient standardisation path, it will most likely prove impossible to meet these objectives.
 - This is due to its starting point as a very high data rate broadband delivery system.

What is needed is an optimised solution for Cellular IoT that can be deployed using existing cellular infrastructure.
Key features of clean-slate solution

- **IoT network can be deployed in a very small bandwidth** (180 kHz downlink, 180 kHz uplink)
 - Offers a wide range of deployment options
 - Capacity for huge numbers of terminals per cell (tens of thousands)
 - Modulation methods minimise coexistence issues with adjacent bands

- **Optimized for ultra-low terminal cost** (< $4 ASP)
 - Designed from the ground-up to deliver the required performance for IoT at very low cost
 - Removes unnecessary complexity and legacy overhead
 - Simple air-interface should greatly reduce IPR licensing costs compared with LTE

- **Optimised for very long terminal battery life** (10 years feasible in many scenarios)
 - Efficiently supports very low duty cycle modes
 - Supports both scheduled and event driven traffic
 - Single-carrier modulation allows high efficiency, high power transmitters (similar to GPRS)

- **Extended coverage compared with existing cellular** (20 dB enhancement)
 - Provides deep indoor penetration
 - Very flexible trade-off between data rate and link budget
Downlink channelization

- Each 180 kHz resource block is split into 12 downlink channels, spaced by 15 kHz
 - Conceptually similar to OFDM
 - Allows access through FDMA and TDMA
 - Trivial equalisation at receiver
 - One downlink channel is reserved for synch / broadcast for efficient network acquisition

- Each basestation sector can be assigned a subset of downlink channels
 - Supports very flexible frequency re-use
 - Allows frequency diversity through hopping

- Channels are individually modulated (BPSK, QPSK, 16QAM) and pulse-shaped to minimise spectral side-lobes
 - Reduces coexistence issues with adjacent systems

- Maximum PHY data rate per channel is 36 kbps; minimum PHY data rate per channel is 375 bps
Uplink channelization

- Each 180 kHz resource block is split into 36 uplink channels, spaced by 5 kHz
 - Conceptually similar to OFDMA
 - Allows access through FDMA and TDMA
 - Provides high uplink capacity and very flexible frequency re-use
- Uplink channels are individually modulated and pulse-shaped to minimise inter-user interference
 - Avoids feedback loops for frequency correction or timing advance, unlike OFDMA or SC-FDMA
- Modulation is (D)QPSK, (D)BPSK or GMSK
 - Very low or zero PAPR, for high transmitter efficiency (similar to GPRS)
- Uplink channels may be bonded by x2, x4 or x8
- Maximum PHY data rate per bonded channel is 45 kbps; minimum PHY data rate per channel is 250 bps
Deployment in GSM sub-carrier

Licensed by Mobile Network Operator (e.g. GSM850 or GSM900)

Multiple GSM sub-carriers, with 200 kHz spacing

M2M network is deployed in a single re-farmed GSM sub-carrier

Each single-carrier is individually pulse-shaped to avoid spectral spillage

Can also be deployed in left-over spectrum following 2G/3G re-farming

Implemented as FDD, i.e. with M2M downlink in GSM downlink sub-carrier group

Single-carrier, pulse-shaped modulation avoids spectral side-lobes so minimises co-existence issues
Deployment in LTE guard bands

More challenging than deployment in GSM carriers, due to co-existence issues, but effective mitigation strategies are being studied.

M2M network is deployed in LTE guard bands

Each single carrier is individually pulse-shaped to avoid spectral spillage

Use of both guard bands provides frequency diversity

LTE Physical Resource Blocks (50 PRB x 180 kHz in 10 MHz)

Licensed by Mobile Network Operator in LTE700, LTE800 or LTE900

9MHz occupied by OFDM Resource Elements

LTE in adjacent channel

Power

Frequency (MHz)
20 dB coverage enhancement

<table>
<thead>
<tr>
<th>Cellular IoT link budget</th>
<th>Downlink</th>
<th>Uplink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0) Total Tx power (dBm)</td>
<td>43</td>
<td>23</td>
</tr>
<tr>
<td>(1) Tx power per channel (dBm)</td>
<td>32.2</td>
<td>23</td>
</tr>
<tr>
<td>Receiver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Thermal noise density (dBm/Hz)</td>
<td>-174</td>
<td>-174</td>
</tr>
<tr>
<td>(3) Receiver noise figure (dB)</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>(4) Interference margin (dB)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(5) Occupied channel bandwidth (kHz)</td>
<td>12</td>
<td>3.75</td>
</tr>
<tr>
<td>(6) Effective noise power = (2) + (3) + (4) + 10 log((5)) (dBm)</td>
<td>-124.2</td>
<td>-133.3</td>
</tr>
<tr>
<td>(7) Required SINR (dB)</td>
<td>-4.7</td>
<td>-5.0</td>
</tr>
<tr>
<td>(8) Receiver sensitivity = (6) + (7) (dBm)</td>
<td>-128.9</td>
<td>-138.3</td>
</tr>
<tr>
<td>Maximum coupling loss (MCL) = (1) – (8) (dB)</td>
<td>161.1</td>
<td>161.3</td>
</tr>
</tbody>
</table>

Simulation parameters:
- Uplink is GMSK, 1/3 code rate, x4 spreading/repetitions, 1T2R
- Downlink is BPSK, 1/2 code rate, x16 spreading/repetitions, 1T1R
- Channel model is 3GPP EPA 1 Hz
- Base station Tx power is same as typical GSM
- UE Tx power is +23 dBm, so typical of a low cost terminal
- Base station and UE receiver noise figures are taken from 3GPP specs to allow a fair comparison with GSM and LTE

From 3GPP 36.888:
- GSM MCL is 139.4 dB
- LTE MCL is 140.7 dB

20 dB coverage enhancement is achieved versus LTE/GSM specs
Cell capacity analysis
Served uplink users per hour per 180 kHz

- Shows number of users served with 100 byte uplink payload per 180 kHz per hour
- Assumes 9 uplink channels (so frequency re-use is ¼ to mitigate inter-cell interference)
- Terminal transmit power is +23 dBm with -4 dB antenna gain
- Base station noise figure is 4 dB with +14 dB antenna gain
- 3GPP macro cell path loss model plus 0, 20, 30 or 40 dB indoor penetration loss
- 6 dB margin for modulation rate adaption relative to theoretical SNR threshold
Cell coverage analysis
Percentage users that can be reached

- Shows percentage of terminals that can be reached, assuming uniform density.
- Modelling assumptions are the same as for the Cell Capacity Analysis slide.
- Minimum uplink data rate is set as:
 - 250 bps = 32 bytes/sec (raw PHY rate after FEC)
 - ~20 bytes/sec after overheads
- Terminals that cannot support this minimum data rate are considered to be not covered.

![Cell coverage analysis graph](image)

- 3GPP macro cell model + 20 dB penetration loss
- 3GPP macro cell model + 40 dB penetration loss
- 1732m inter-site distance

0 dB 20 dB 30 dB 40 dB
Power consumption analysis

<table>
<thead>
<tr>
<th>Coverage enhancement vs. GSM</th>
<th>Battery life for 5 Wh capacity</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Report = 20 bytes uplink, 20 bytes downlink</td>
<td>+23 dBm transmit power at 33% efficiency</td>
</tr>
<tr>
<td></td>
<td>4 reports/hour</td>
<td>1 report/hour</td>
</tr>
<tr>
<td>GSM + 0 dB</td>
<td>> 10 years</td>
<td>> 10 years</td>
</tr>
<tr>
<td>GSM + 10 dB</td>
<td>4 years</td>
<td>> 10 years</td>
</tr>
<tr>
<td>GSM + 20 dB</td>
<td>0.5 years</td>
<td>2 years</td>
</tr>
</tbody>
</table>

Assumptions:
- Voltage (V): 3.3
- Tx: +23dBm (mA): 180
- Rx (mA): 30
- Idle/sleep (mA): 0.005

- 10 years battery life is achievable depending on required coverage enhancement and reporting interval, assuming a 5 Wh battery capacity
- For extreme coverage (GSM + 20 dB), reporting interval must be quite low or battery capacity must be increased to achieve 10 year battery life
Module cost analysis

Estimated module ASP is ~ $4

- Based on 2016 costs, including margin

Assumes single-chip RF/BB IC

- 700-960 MHz transceiver
- Integration level comparable with low cost PAN technologies (< 10 mm² on 65 or 90 nm)
- Software defined modem for flexibility, given low data rates
- Embedded flash and OTP
- Integrated secure element
- Integrated power management
- Ability to execute 3rd party application code and to interface directly to sensors

<table>
<thead>
<tr>
<th>eBOM</th>
<th>2016 Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single chip RF/BB (incl. margin)</td>
<td>$ 0.95</td>
</tr>
<tr>
<td>RF FEM</td>
<td>$ 0.50</td>
</tr>
<tr>
<td>26MHz XO</td>
<td>$ 0.20</td>
</tr>
<tr>
<td>32kHz XO</td>
<td>$ 0.12</td>
</tr>
<tr>
<td>RF filter</td>
<td>$ 0.15</td>
</tr>
<tr>
<td>Other discretes</td>
<td>$ 0.25</td>
</tr>
<tr>
<td>Total eBOM</td>
<td>$ 2.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mechanical, Assembly & Test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB (4 layer FR4, 175mm²)</td>
<td>$ 0.13</td>
</tr>
<tr>
<td>Shield</td>
<td>$ 0.04</td>
</tr>
<tr>
<td>Assembly</td>
<td>$ 0.45</td>
</tr>
<tr>
<td>Test</td>
<td>$ 0.10</td>
</tr>
<tr>
<td>Yield loss (2%)</td>
<td>$ 0.06</td>
</tr>
<tr>
<td>Packaging/labelling</td>
<td>$ 0.10</td>
</tr>
<tr>
<td>CEM margin (5%)</td>
<td>$ 0.17</td>
</tr>
<tr>
<td>Total ex-works price</td>
<td>$ 3.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OEM value-added</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Freight (shipped)</td>
<td>$ 0.20</td>
</tr>
<tr>
<td>Allowance for swap/RMA (2%)</td>
<td>$ 0.07</td>
</tr>
<tr>
<td>OEM margin (10%)</td>
<td>$ 0.37</td>
</tr>
<tr>
<td>Total expense to MNO or VAR</td>
<td>$ 3.87</td>
</tr>
</tbody>
</table>
Summary

- The proposed clean-slate radio access technology offers some key benefits:
 - IoT network can be deployed in a small bandwidth (180 kHz x 2)
 - Optimised for ultra-low terminal module cost (< $4 ASP)
 - Optimised for very long terminal battery life (10 years is feasible in many scenarios)
 - Extended coverage compared with existing cellular (20 dB enhancement)

- These benefits are very hard to achieve through the evolution of existing cellular radio access technologies
 - Because the IoT requirements are so different from mobile broadband / voice
 - And existing systems require too much legacy support and performance compromise

- Deployment options include re-farming of GSM sub-carriers, LTE guard bands, and left-over fragments of spectrum during re-farming of 2G/3G to 4G

- Proposed standardisation route is through 3GPP GERAN (see “study item description” submitted by Vodafone to the recent GERAN meeting in Valencia, which was approved)